ALPS MHD Results

Sergei Molokov, Coventry University Claude B. Reed, ANL

Presented at ALPS e-Meeting
May 4, 2001

Presentation Outline

- Modeling results of MHD flow in an insulated duct
- International Collaboration on MHD for ALPS
- Future Modeling and Experiments at low-intermediate
 MHD interactions

MHD FLOW IN A CIRCULAR DUCT IN A NONUNIFORM MAGNETIC FIELD

• Comprehensive, parametric three-part study of the combined effects of a non-uniform magnetic field and bending

Figure 1: Bended circular duct. Magnetic field is perpendicular to the plane of the bend

Figure 2: Duct cross-section and flow sub regions at high Ha

PART 1 OF THE STUDY: STRAIGHT DUCT IN A NONUNIFORM FIELD

Figure 3: Flow in a straight duct in a nonuniform field: projection onto (x,z)plane

Figure 4: "Family" of magnetic fields for different values of the field gradient γ and for $B_d = 0.2$ (field level downstream

PART 2 OF THE STUDY: INCLINATION OF THE FIELD GRADIENT

Figure 5: Development of core pressure at the duct centre (triangles), and at the side regions for z = 1 (rectangles) and for z = -1 (circles)

- The flow is no longer symmetric with respect to z
- Since the field decreases first at z = 1, pressure starts falling sooner at this position than at z = -1

PART 3 OF THE STUDY: FLOW IN A BEND

- Incorporates flow in a straight duct, inclination of the field, and the effect of bending
- Will be finished by the end of May

MODEL

The dimensionless parameters are:

$$Ha = B_0 a \sqrt{\sigma/\rho v} >> 1$$
, the *Hartmann number* $N = \sigma a B_0^2 / \rho v_0 >> 1$, the *interaction parameter*

- Asymptotic approach for high Ha based on the study by Hua&Walker (1989)
- The flow region is divided into the core and the boundary layers at duct walls
- The analysis leads to two partial differential equations for the wall potential, Φ , and the core pressure, P
- The equations are solved numerically by an improved finite-difference scheme
- The new scheme allows for modeling flows at very high Hartmann numbers ($>10^5$)

RESULTS I: WALL POTENTIAL AND CORE PRESSURE

Results below are for Ha = 7000, B_d = 0.2, γ = 0.8 unless stated otherwise

Figure 6: Wall potential

Figure 7: Core pressure

RESULTS II: AXIAL VELOCITY AND CURRENT

There is a stagnant zone for -1 < x < 4.5.

Figure 9: Axial core current

RESULTS III: VARIATION OF PRESSURE ALONG THE DUCT

Figure 10: Development of pressure along the duct axis.

Definition of the development length, and the 3D pressure drop

Development length upstream:

$$l_{\text{dev,u}} = 22$$

Development length downstream:

$$l_{\text{dev,d}} = 17$$

3D pressure drop

$$\Delta p_{3D} = 0.006$$

RESULTS IV: VARIATION OF Ha

Figure 11: 3D pressure drop

Figure 13: 3D length

Figure 12: Scaled 3D pressure drop

Figure 14: Development length

RESULTS V: VARIATION OF B_D, FIELD LEVEL DOWNSTREAM

Figure 15: 3D pressure drop

Figure 16: Development length

Overall: if Bd increases, 3D effects are strengthened

RESULTS VI: VARIATION OF THE FIELD GRADIENT γ

Summary:

There is a strong dependence of the three-dimensional pressure drop on γ for fields with weak gradients (γ < 0.5), and a weak dependence for fields with strong gradients ($\gamma > 1$).

Figure 17: 3D pressure drop

RESULTS VII: THE BENCHMARK PROBLEM (Dai-Kai Sze)

Related to inlet/outlet pipes for ARIES

- Consider the flow of lithium in an insulating circular duct of 50cm diameter
- The flow enters a magnetic field, which varies from zero to 12T within a distance of 50 cm
- The flow velocity is 10m/s
- Estimate the three-dimensional MHD pressure drop

For this problem the values of the dimensionless parameters are:

$$Ha = 258,457.$$
 $N = 24,048.$ $B_d = 0, \gamma = 1.5.$

Results:

_	B_d	$\Delta p_{_{3D}}$	$\Delta p_{_{3D}}^{*}$, MPa	$d_{\scriptscriptstyle 3D}$	$1_{\rm dev,u}$	$l_{\text{dev,d}}$	l_{dev}
_	0.2	$1.12 \cdot 10^{-3}$	1.35	245.7	120.41	93.62	214.03
	0.1	$1.22 \cdot 10^{-3}$	1.47	267.6	137.63	64.78	202.42
	0	$1.32 \cdot 10^{-3}$	1.59	289.6	154.85	35.94	190.79

RESULTS VIII: THE EFFECT OF THE FINITE LENGTH OF THE MAGNET

Figure 18: Field distribution in real magnets (ALEX) and the model field

Figure 19: Development of pressure in a short magnet $(X_2 = 15)$ from the centre outwards

Figure 20: The measure of the fully developed flow at the centre of the magnet, η , against half magnet length, X_2 . Flow is fully developed for $X_2 > 40$

15

PART 2 OF THE STUDY: INCLINATION OF THE FIELD GRADIENT

Figure 21: Development of core pressure at the duct centre (triangles), and at the side regions for z = 1 (rectangles) and for z = -1 (circles)

- The flow is no longer symmetric with respect to z
- Since the field decreases first at z = 1, pressure starts falling sooner at this position than at z = -1

PART 2 OF THE STUDY: POSITIONS OF VELOCITY MAXIMA

Figure 22 Positions of velocity maxima for different values of angle, α

- •For z > 0 velocity maximum moves upstream and towards the duct axis as α decreases
- For z < 0 velocity maximum moves downstream and towards the duct axis as α decreases
- •Stagnant zone disappears for $\alpha < 80^{\circ}$
- Engineering conclusion: if one wants to avoid a stagnant zone within the flow, the duct axis ought to be inclined to the gradient of the non-uniform magnetic field

PART 3 OF THE STUDY: **FLOW IN A BEND**

- Incorporates flow in a straight duct, inclination of the field, and the effect of bending
- Will be finished by the end of May

MODELING CONCLUSIONS

- Three-dimensional effects in insulated circular ducts are significant
- High development length places a restriction on the highest value of Ha that can be reached in the laboratory experiments without violating fully developed flow conditions
- For the values of parameters relevant to fusion the development length is 10-150 duct diameters
- The three-dimensional pressure drop is equivalent to the extension of the ducts with fully developed flow by 10-100 duct diameters
- 3D pressure drop for inlet/outlet pipes for ARIES is 1.59MPa
- Current work focuses on the effect of inclination of the field gradient to the duct axis, bending and jet flow

19

International MHD Collaboration for ALPS

Status and Near Term Plans

- Parties and Institutions:
 - C. B. Reed, ANL
 - Prof. S. Molokov, Coventry Univ., UK
 - Dr. L. Buhler, FzK, Germany
 - Prof. Zengyu Xu, Southwestern Institute of Physics, Chengdu, Sichuan China
 - Dr. O. Lielausis, Inst. Physics, Latvia
 - F. Debray, NHMFL, Grenoble FR
- Meeting of Working Group on High Magnetic Fields in Coventry, UK:
 - Discuss and plan NSTX-relevant tests
 - Full day, 6/29/01, devoted to ALPS International MHD Collaboration
 - In addition to the above members, the following will attend:
 - Dr. Y. Kolsenikov, Inst. Physics, Latvia
 - Prof. R. Moreau, MADYLAM, Grenoble
 - Guy Laffont, CEA-Cadarache, FR
- Tour of NHMFL, Grenoble, FR
 - Molokov & Reed, hosted by F. Debray
- SWIP-China
 - In fall 2001, will send graduate student, Ms Maojie, to Coventry for PhD under Molokov

Next Steps Modeling and Experiments For low-intermediate MHD interactions

- Produce a numerical solution for two NSTX-related problems:
 - flow in a straight insulating circular duct in a non-uniform magnetic field, and
 - straight jet appearing from a straight circular insulating duct
- Compare with asymptotic, numerical, high-Ha solution obtained previously
 - evaluate the effects of inertia
- Develop a hybrid code for the jet using a domain decomposition technique
 - extend the applicability of the resulting code to more complex geometries
 - determine complexity of problems that may be treated by the hybrid code
- Plan collaborative experiments on liquid metal jet flows (ANL-Coventry-FzK-Grenoble-Latvia-SWIP), which are relevant to both NSTX for lower magnetic fields, and to fusion reactors for high magnetic fields

21